Specification Sheet

Equipment Model: GVAC-1200 Vacuum Furnace

<table>
<thead>
<tr>
<th>Type</th>
<th>Horizontal / Front Loading, High Vacuum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber</td>
<td>Electropolished Stainless Steel, Coldwall</td>
</tr>
<tr>
<td>Maximum Temperature</td>
<td>1250°C C.</td>
</tr>
<tr>
<td>Useable Hot Zone</td>
<td>10” (250 mm) D. x 5” (125 mm) W. x 5” (125 mm) H</td>
</tr>
<tr>
<td>Frame Dimensions</td>
<td>51” (130 cm) W. x 26” (66 cm) D. x 20” (51 cm) H.</td>
</tr>
<tr>
<td>Power Requirements</td>
<td>240V 1 Ph. 60A 60 Hz. – 230V 1Ph. 60A 50 Hz..</td>
</tr>
<tr>
<td>Gas Requirements</td>
<td>25 – 50 psig, Nitrogen (¼” Swagelok)</td>
</tr>
<tr>
<td>Compressed Air</td>
<td>80 – 100 psi (¼” Swagelok)</td>
</tr>
</tbody>
</table>

Process Vacuum at temperature 10^{-6} Torr range
Vacuum in 10^{-7} Torr range at ambient

Cooling Requirements - 25 psig at 3 gallons per minute.
Note: Maximum back pressure is 15 psig.
24,000 BTU load for chiller calculation

Heat up ramp rate 100° C per minute - empty chamber.

Heating elements and heat shields are constructed of Molybdenum. Insulators are made of High Alumina.

Standard Features:
- 250 LP/S Turbomolecular Pump
- 200 L/min Mechanical “Roughing” Pump
- High Vacuum Isolation Valve
- Easy to Operate Microprossesor Controllers
- 19 Programs - 20 Segments per Program
- Digital Chart Recorder
- Ethernet Connectivity and Webserver
- Sight glass for calibration melts
- Active Braze Control
- Fully Automatic - One button push starts the run.
 Automatically it will rough pump → cross over to high vac → ramp to temperature and soak → cooldown → let up to ATM → and show amber indicator light when run is finished.

Options:
- Dry Scroll Pump
- Survey Thermocouples (up to 4)
- Tower Indicator Lights - 3 Color
- Computer Control
- Partial Pressure Operation
- Helium Quick Cool
- Combination Hydrogen/Inert Operation
- Custom Support Table
Equipment Description

TABLETOP HIGH VACUUM TURBO-PUMPED FURNACE
For Automatic Programmed Operation to 1250°C.

Model GVAC-1200

Overview
The Concepts & Methods Co., Inc. “GVAC-1200” tabletop high vacuum furnace is designed to reproducibly vacuum braze, degas and otherwise process loads of up to 5” wide by 5” high by 10” deep. The letter selected ramp and soak program is accurately controlled to 1250°C at pressures to the 10⁻⁶ Torr range. The furnace and vacuum controls pump system and interlocks, are integrated in a fully automated unit to assure simple reliable operation.

Operation
The work is loaded into the front of the furnace, the front heat shield stack inserted, and the door closed and latched. One of nineteen selectable, user programmed pump down and thermal profiles is chosen, and the “Start” key pressed. The high vacuum gate valve opens and the turbo-pump is enabled. A direct drive mechanical pump is coupled to the turbo-pump thru a foreline valve and trap rough pumps the system. This is accomplished thru the idle 100 mm turbo-molecular high vacuum pump in approximately three minutes. At its limiting fore-pressure, the turbo-pump is automatically started. It reaches full speed within 4 minutes. As the pressure falls below 1 x 10⁻³ Torr, the high vacuum ionization gauge is powered. In the clean system, low five-scale mid six-scale pressure is reached in a total time from cold start-up of approximately fifteen minutes. The selected time vs. temperature profile then runs. Upon completion of the cooldown portion of the program, the gate valve closes if the program does not provide to leave the load under vacuum, the turbo-pump is powered down and the foreline valve closed. The chamber is let up to Nitrogen or other inert gas to facilitate un-loading. If desired to facilitate more rapid cooling, the furnace may be programmed to close the gate valve immediately on removal of power, and as the turbo-pump is powered down, inert gas is admitted to a programmed level. The furnace is programmed to remain in this state until the safe access temperature has been reached, at which time the program ends, leaving the load in the inert atmosphere until the operator wishes to continue backfilling to remove the work.

Construction
The cabinet measures approximately 51” wide by 26” deep by 20” high. Its substantial frame is constructed of heavy steel structural shapes. Square tubular support feet provide a convenient location in which to insert bars for lifting. Panels are readily removed to gain access for efficient, on the spot service. A cooling fan draws air thru a disposable filter to cool the power components. The cabinet’s sturdy steel floor supports the furnace power transformer and the mechanical pump. Mounted within this structure also, are the S.C.R. power control, turbo-pump converter, control transformer, logic electronics, interlocks and plumbing. The controls are conveniently located at the left front. The finish used on this, and all CAMCo equipment is baked powder coat paint, chosen for its’ durability and solvent resistance.
Vacuum Chamber Assembly
The double wall, water-cooled stainless steel vacuum chamber, a water-cooled copper pumping port baffle within the chamber, the gate valve, and the turbo-pump are assembled as a module. This is bolted at the chamber flange to a front right panel that supports the chamber assembly within the cabinet. The chamber cylindrical wall is penetrated by the element power feedthru ports, furnace thermocouple fittings, and the vacuum system neck. This neck includes fittings for the ion and convectron gauges, and gas letdown port.

Chamber Door Assembly
The double walled, water-cooled stainless steel door is flanged to mate with the chamber. The door handle includes a cam locking arrangement to easily compress the “O” ring door seal. Needle-bearing hinges provide accurate registration of the door to the chamber. A centrally located sight port permits viewing the work thru the viewing holes in the front shield stack. A positive locking solenoid prevents the door assembly from opening until the temperature of the furnace has cooled to the predetermined safe access temperature setpoint.

Heat Shield and Element Assembly
The furnace proper is located within the double wall water-cooled chamber. It is very conservatively rated for continuous 1250° C operation. The low voltage, serpentine Molybdenum rod heating element is of two semi-cylindrical sections supported by high alumina insulators. It surrounds the top, sides and bottom of the work area. Work is placed on a refractory metal hearth that in turn is supported, as is the heat shields with optically staggered pumping ports, the rear end stack of four shields, and the front shield stack surround the element and work area.

Heating Power Supply
Power is delivered by a conservative, continuously rated 10 KVA transformer. This is driven by a digital line and load regulated, phase fired SCR control. A current limiting feature is included, which provides long element life.

Instrumentation and Controls
Closed loop control of the furnace SCR power unit as a function of temperature is accomplished by a Honeywell multi-program, ramp and soak process controller. The “vacuum system enable signal” and other control functions are also supplied at the appropriate time by this unit. A Granville-Phillips type 340 digital gauge control unit, supporting two convectron (Pirani) gauges and one Bayard-Alpert gauge is included to monitor system pressure. The Bayard-Alpert gauge tube and one convectron measure chamber pressure. The second convectron is located to measure pressure at the foreline. When the pumping system is isolated from the chamber, this sensor also provides information regarding the condition of the mechanical pump oil. A process control module is included in the vacuum gauge controller. This allows the pre-configured pressure set-points to control the system automatic valving and turbo power-up functions. Vacuum system operation is integrated with furnace operation through the process controller. A linearized analog output provided by the gauge control, and output from the furnace temperature thermocouple can drive two channels of a chart recorder, providing a record of the process. When the recorder option is ordered, it is installed and tested prior to shipment. Included is a vacuum setpoint temperature delay feature that is programmable ON or OFF during the heating cycle of the program. A preprogrammed vacuum cap will put the controller on “Hold”, preventing the temperature from increasing until the vacuum has recovered from outgassing and then resumes the ramping of the heating cycle.

Atmosphere Control
Our vacuum furnaces can be ordered with Combination Vacuum and Inert Reducing Atmosphere control. Through programming, either vacuum or atmosphere can be chosen to make this an ideal R & D or laboratory furnace. When this option is ordered, the furnace can run either Nitrogen or Argon as the purge gas. The process gas can be Hydrogen, Hydrogen Argon or Hydrogen Nitrogen. A Bubbler to humidify the process gas would come standard with this option. A burn-off column to ignite excess process gas is also standard. As with our standard atmosphere furnaces, this combination furnace comes with all the safety interlocks required with Hydrogen operation.
Safety Features

- Thermocouple break protection (Thermocouple burn-up) assures that heating power is removed from the furnace in the event of sensor failure.
- Over temperature indication is read on a separate control module from the monitor thermocouple. This overtemp alarm causes the heating elements to shut down as a further backup.

Other numerous interlock functions protecting the operator and equipment include:
 - Panel Interlock
 - High Cabinet Temperature
 - Low Coolant Flow
 - Low Gas Pressure Switches
 - Vacuum Ramp Delay
 - Heaters are interlocked with the vacuum gauge control so that heating will not occur if there is insufficient vacuum.
 - Thermal overload protection for the Turbo Molecular Pump
 - High Vacuum Isolation Valve to protect the Turbo Pump during vent and quick cooling of the hot zone.

An operating manual is supplied with the equipment. Blank worksheets included in the manual provide a convenient form for depicting the desired process for entry into the microprocessor controller, and also serve as a hard copy of the program. The unit is shipped with an example program stored in memory, which is depicted by the enclosed example worksheet. Facilities information is supplied prior to shipment to assist in preparation for receipt of the equipment.
CAMCo Model GVAC1200 Hot Zone

Useable Hot Zone Size, 5” x 5” x 10” Deep
C-H-12 HOT ZONE LAYOUT

- Elements
- Shield #1
- Shield #2
- Shield #3
- Shield #4
- Control TC
- Insulators
- HEARTH 6 X 10
- TC OT
- 10.00
- 6.00
- 5.29
- 11.03

NOTICE: The document contains information which may be confidential and/or proprietary to Concepts & Methods Co., Inc. and/or others. This document is submitted to you in confidence and should not be reproduced, disclosed or used in manufacturing without the express written permission of Concepts & Methods Co., Inc.
A: 60A. @ 208 OR 240V. 60 Hz SINGLE PHASE DISCONNECT.
B: NITROGEN, 30 TO 50 PSIG AT A MAXIMUM FLOW OF 30 SCFH 1/4" TUBE
C: AIR, 80 TO 100 PSIG 1/4" TUBE
D: PROCESS ATMOSPHERE EXHAUST 3/8" TUBE
E: COOLING WATER SUPPLY; 25 PSIG MIN. AT 3 GPM – SEE NOTE 1/2" FPT
F: COOLING WATER RETURN OR PRESS. DRAIN IF USED – SEE NOTE 1/2" FPT
G: LINE PRESSURE REGULATORS

SUGGESTED UTILITY PANEL LAYOUT
LOCATE ON WALL BEHIND TABLE

CUSTOMER TABLE

APPROX. 32"

24.00" SUGGESTED REAR ACCESS (NTS)

NOTE: (MAX. BACK PRESSURE 15 PSIG AT 3 G.P.M.)

TOL’S EXCEPT AS NOTED

MAT:

FINISH:

DRN.BY: T.BARULICH
APP.BY:
DATE: 6-4-02

G-VACUUM FURNACE
USED ON TASK FWO